Implementation of Feed-forward Neural Network Models for Pattern Classification Using Transformation Based Feature Extraction Methods
نویسندگان
چکیده
Automatic recognition of handwritten Hindi characters is a difficult and one of the most interesting research areas of pattern recognition field. A lot of work has been done in this area till date; still it is a subject of active research. Hindi characters are cursive in nature and thus characters may be written in various cursive ways. Characters also show a lot of similar features such as header line, vertical bar, curves and etc. Handwritten characters may be of varying sizes, width and orientation, which makes the problem more complicated and difficult to solve. The performance of an optical character recognition system extremely depends on the procedure used to extract quality features from characters. A number of feature extraction, classification and recognition techniques have been used successfully in this area. Proposed work is focused on some of the existing techniques like neural networks for the recognition of handwritten Hindi characters. Neural networks are good at recognizing handwritten characters as these networks are insensitive to the missing data. In this paper, we are implementing and analyzing the performance of feed-forward neural network models to perform pattern classification for handwritten Hindi characters using different transformation based feature extraction methods.
منابع مشابه
A Multilayer Neural Network for Classification of Frequency Information Dominant Patterns
Features of pattern data can be expressed in a more informative feature domain in order to improve the classification performance. This paper proposes a new implementation of the multi-layer feed-forward neural network that can do classification based on the frequency features extracted by the first hidden layer that performs correlational filter operation. The correlational feature extraction ...
متن کاملAn Improved Fuzzy Neural Network for Solving Uncertainty in Pattern Classification and Identification
Dealing with uncertainty is one of the most critical problems in complicatedpattern recognition subjects. In this paper, we modify the structure of a useful UnsupervisedFuzzy Neural Network (UFNN) of Kwan and Cai, and compose a new FNN with 6 types offuzzy neurons and its associated self organizing supervised learning algorithm. Thisimproved five-layer feed forward Supervised Fuzzy Neural Netwo...
متن کاملNeural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملSpeaker Identification System Using Wavelet Transformation and Neural Network
In this Present study, the technique of wavelet transform and neural network were developed for speech based text-dependent and text0independent speaker identification. 390 feature were fed to feed-forward back propagation neural network for classification The function of feature extraction and classification are performed using wavelet and neural network system. The declared result shows that ...
متن کاملOn the use of Textural Features and Neural Networks for Leaf Recognition
for recognizing various types of plants, so automatic image recognition algorithms can extract to classify plant species and apply these features. Fast and accurate recognition of plants can have a significant impact on biodiversity management and increasing the effectiveness of the studies in this regard. These automatic methods have involved the development of recognition techniques and digi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016